ePRONICS

© OPUSER V

デジタルシミュレーション

JK-FF を用いた同期式 8 進カウンタ クロックジェネレーター、ロジックアナライザの使用

7 セグメント LED のアニメーション

JK Flip Flop (JK-FF) を用いた同期式8進カウンタのタイムチャートを確認します。 またカウンタの信号をロジックアナライザにて確認します。確認後は部品7セグメントLED表示器を 追加し、アニメーションにてカウント表示の確認を行います。

下表にリストされている部品を使って回路図を作成しましょう。

使用パーツリスト						
デバイス	名称	デフォルトホットキー※				
JK Flip-Flop	5473					
2AND	7408	2				

※初期設定されているキーとなり、キー入力によって部品が呼びだされます。

● 同期式カウンタ

ホットキーが登録されていない部品は名称から検索して配置してください。

*	Add components by name	×
	部品名を入力して配置 部品名.[X].[M.[角度]	承認
8		<u>キャンセル</u>
** **	5473	-
\$	ライブラリエクスプローラ起動	
]

Mixed Mode Simulator

スケマティックエディタのメニュー設定から Mixed Mode シミュレータを選択します。

プリプロセスダイアログが表示されます。解析可能かどうかソフトが判断します。

解析が行えるようすべてのデバイスはシミュレーションモデルを持たなければなりません。

この回路の場合は2つのシミュレーションモデルが使用されています。既に起動している場合は、シ

ミュレーションからプリプロセスを選択します。

シミュレーション(S) マップ(M) プリプロセス(P)

	•	UN1	
		,	_
テジタル入力 14	504	2-input AND gate	
デジタル出力 7	2508	J–K Flip–Flop with clear	
インプット A/Ds 0			
アウトプット D/As 0			
部品数 4			
プリミティブ(P) 2			

シミュレーションの準備を行います。

FF73A/1

Q

Q

말 운

影 产

⊈ ג ע ג

∕ ਨੱ ∻ ਪੈ ×

?⊪ ?≟

J

К

CLK

CLR

×

×

×

同様に CLR 入力ワイヤーをクリックして任 意の位置でラベルをクリックして配置しま す。

同期式カウンタ

位置でラベルをクリックして配置

JとK入力ワイヤーをクリックして任意の

次にクロックジェネレーターを使用して、 クロックパルスの設定を行います。

ファンクションツールからロジック初期設 定、オプションツールからクロックジェネ レーターを選択します。

CLK 入力のワイヤーをクリックします。

クロックエディタ

クロックパターン選択…

パター:

状態

時間

- シングルパターン -

消去

ヘルプ(H)

単位

∄s 👻

クロックエディタ画面が表示されます。 シングルパターンと繰り返しパターンの設定が可 能です。

ここでは繰り返しパターンの設定を HIGH 10us、 LOW 10us に設定します。

単位:usを選択 状態:H(ロジカル1) 時間:10

-

追加

キャンセル

繰り返しパターン

消去

ハターフ設定 (S)

パターン

状態

時間

追加ボタンをクリック

追加

承認(人)

追加ボタンをクリック

パターン設定をクリック

部品

ワイヤ/バス(W) ✓ 測定ポイント設定 ページノート

ツール(T) 設定(R) シミュレーション(S) マッ

陸 へ

R 🔨

*?

20

₽

×

?₽ ?∎

£ 🔃

クロックパターン選択へ上記で設定したパター ンが追加されます。設定内容に括弧表示されてい るものは、繰返しパターンになります。

同期式カウンタ

承認をクリックします。

クリックしてラベルを任意の位置へ配置します。

次に波形マーカーを配置します。

メニューツールから測定ポイン設定を選択しま す。

ファンクションツールから波形マーカー設定、オ プションツールから論理波形マーカーを選択し ます。 S1: CLK ネット上でクリック配置

S2:Q1 ネット上でクリック配置

S3:Q2 ネット上でクリック配置

S4:Q3 ネット上でクリック配置

以上で、準備完了です、次にシミュレーションを 行います。

🚆 シミュレーションパラメータの設定

解析タイプ

斷析

----- 🔛 モンテカルロ解析

シミュレーション

23	ミュレーション(S) マップ(M) 表示(V)	\sim l
	プリプロセス(P)	
	解析(A)	
	トランジェント解析(オシログラフ)(R)	
	トランジェット解析開始	

バラメータ設定

過渡解析

バイアス点計算

バラメトリック解れ

フーリエ解析

DCスイーブ解析

ACスイープ解析

モンテカルロ解れ

感度解析

メニューシミュレーションから解析を選択
 します。

過渡解析を選択します。 最大時間ステップ:1u 最終時間値:0.2m

承認をクリックします。

過渡解析にチェックを入れ、開始をクリッ クします。

波形ビューワが表示、4 つの波形が表示されます。JK—FF Q 出力 S2, S3, S4 タイムチャートを確認すると 2 進数 0−7 までカウントしています。

開始

2

Г

Г

Γ

Г

統行

キャンセル

X

ロジックアナライザ

OPUSER には簡単なロジックアナライザ機能があります。この機能は配置した論理波形マーカーのデジ タルチャンネルから情報を収集し表示します。表示するフォーマットにはバイナリ、16 進数、8 進数、 少数が可能で、ファイルをテキスト保存することが可能です。

		_ <* <& 隆 🔀
表示(<u>V</u>)] ヘルプ(<u>H</u>) 拡大レンズ ナビゲータ		
ツールパー 単位(U) スケマティック(S)	+ +	 ✓ ファンクションツール Ctrl+B ✓ オプションツール カスタムツールパー Ctrl+T
 ✓ スクロールパー ✓ ツールチップテキスト(T) ✓ ルーラー(R) ✓ ロングカーソル(C) 	Ctrl+R 92# जिल्लान्स्	 ✓ ツール ✓ ページ ✓ テキスト ✓ サイズ ✓ 位置 ✓ 表示 ✓ 位置調整
	₽ ♦	✓ シミュレーション

ツールバーにある 🖾 をクリックします。

表示されていない場合は、メニュー表示からツー ルバー、シミュレーションにチェックを入れます。

🖧 オシログラフ -	トランジェント解析						
Variable Logic	▼ 時間ステップ 1 #	LC 初期	明化 Solve	•	🖌 II 🗉 🗌 🕄 🤇	? 🛛 🖬 🟥	
-ヮードサイズ で <u>第15</u> 代 C	16 Bit C 32 Bit	時間	バイナリ		16進法	8進法	少数
<u>変数</u> *S2(UN5)* *S3(UN4)* *S1(UN7)* *S4(UN3)* 配置された 論理波形マー力・	ビ… 変数 B0 *S2(UN5)* B1 *S3(UN4)* B2 *S1(UN7)* B3 *S4(UN3)* B4 B5 B6 ごれから記録して B7 ワードの構成	:<					
×							
ワードサイズ選択		_					

セットアップ

- 1. ワードサイズ選択(8bit, 16Bit, 32bit)
- 2. 記録するワードの各ビットに波形を S1-S4 割り当てます。起動時にソフトが自動的に波形を割り 当てます。

3. 自動割当てを修正します。B0~B3 ビットをそれぞれ選択し[<<]をクリック

🐣 オシログラフ -	・トランジェント解析		
Variable Logic	■ ■ 時間ステップ 1 #	LC 初期化 Solve 🔻 📗 🖡 📕	□ ■ 🛛 🕄 💡 🗍 🖬 📳
-ワードサイス @ 8 Bit C	16 Bit 🔿 32 Bit	<u>時間 バイナリ 1</u>	6進法 8進法 少数
<u>変数</u> +52(UN3) +54(UN4)+ +54(UN6)+ +53(UN6)+ +51(UN7)+	ビット 変数 100 #\$10,017 ** B1 #\$40,014)* B2 #\$30,016 * B3 #\$10,017 ** B4 B5 B6 B7		
<	<		
>>>	<u> </u>	•	•
クリックして変数を削除	Â		li

4. 割当を次のようにします。

B0を選択してから S2を選択し[>>]クリックで割り当てます。

🖧 オシログラフ - トランジェント解析		
┃ Variable Logic ▼ 時間ステップ 1	ル LC 初期化 Solve マレト	• II II 🛛 🕄 💡 🗍 🖬 📳
- ワードサイズ	時間 バイナリ	16進法 8進法 少数
変数 ビット 変数 *\$2(UNS)* B0 *\$3(UN6)* B1 *\$3(UN6)* B2 *\$1(UN7)* B3 B4 B5 B6 B7		
>>> <<	•	111 F
クリックして選択ビットの変数を削除		A

5. 同様に B1 に S3、B2 に S4 を割り当てます。

🔓 オシログラフ・	トランジ	ジェント解析						
Variable Logic	▼ 時間	間ステップ 1〃	LC 初	朝化 ^{Solve}	•	🖌 II 🗉 🗌 🕄 1	? 🛛 🖬 🟥	
- ワードサイズ	16 04	C 20 PH	時間	バイナリ		16進法	8進法	少数
		() 32 BIC						
変数	ビット	変数						
S2(UN3)	BO	*S2(UN3)*						
S4(UN4)	B1	*S3(UN6)*						
S3(UN6)	B2	*S4(UN4)*						
S1(UN7)	B3 B4 B5 B6 B7							
	I • 📖	4 III						
>>		<<	•					+
ダブルクリックして変調	数を削除							1.

6. 時間ステップを1uを入力し解析を開始させます。

リアルタイムで分析されたワードが表示されます。

🔓 オシログラフ -	トランジェント解析						
Variable Logic	▼ 時間ステップ ¹ A	LC 初期	朝化 Solve 🔻	▶ 🖛 🗉 🖉 💱			
-ワードサイズ		時間	バイナリ	16)住注	9進法 少数		
(€ 8 Bit C	16 Bit 🔿 32 Bit			シミュレーションの開			
変数	ビット 変数						
S2(UN3)	B0 *S2(UN3)*						
S3(UN6)	B1 *S3(UN4)*						
S1(UN7)	B3 B4						
	B5 B5						
	B7						
< <u> </u>	< <u> </u>						
>>>		•		m	•		

7. 0から7までカウントされていることが確認できます。

🧟 オシログラフ・	・トランジェント解析						x
Variable Logic	- 🔹 時間ステップ 💷	LC 初	期化 Solve 👻) -	🕄 💡 🛛 🖬 🗊		
-9-ドサイス		時間	リバイナリ		8進法	小数	
⊙ ≋Bit) C	16 Bit 🔿 32 Bit	36 μ	00000001	01	001	1	_
		37 μ	00000001	01	001	1	
変数	ビ 変数	38 µ	00000001	01	001	1	-
S2(UN5)	B0 *S2(UN5)*	40 μ	00000001	01	001	1	
S3(UN4)	B1 *S3(UN4)*	41 μ	00000010	02	002	2	
S1(UN7) *S4(LN3)*	B2 *54(UN3)*	42 μ	00000010	02	002	2	
01(010)	B4	43 μ	00000010	02	002	2	
	B5	44 μ	00000010	02	002	2	
	B6	45 μ	00000010	02	002	2	
	B7	4 6 μ	00000010	02	002	2	
		47 μ	00000010	02	002	2	
		48 µ	00000010	02	002	2	. .
		150	00000040	0.0	000		
>>	~~						
シミュレーションの開め	8						1.

• 同期式カウンタ

7 セグメント LED アニメーション

7 セグメント LED 部品を追加して、アニメーションにてカウント表示の確認を行います。 回路図に下記部品を追加します。

使用パーツリスト

デバイス	名称	デフォルトホットキー※
Led BCD(2 進化 10 進数)	9368	
7 セグメント LED ディスプレイ	LEDDISP	

※初期設定されているキーとなり、キー入力によって部品が呼びだされます。

ホットキーがと登録されていない部品は名称から検索し配置してください。

下記の配線を行います。

Ē	線箇所
YO	LED9368 A0
Y1	LED9368 A1
Y2	LED9368 A2
LED9368 a∼g	LEDDISP a∼g

同期式カウンタ

部品を追加したので、シミュレーションから再度プリプロセスを実行します。

シミュレーション(S)) マップ(M)
-------------	----------

プリプロセス(P)

アナログネット(人)	0	デジタルネット(<u>D</u>)	14 (9)	
	•	UN1	•	
デジタル入力 デジタル出力 インブット A/Ds アウトブット D/As 部品数 ブリミティブ(<u>P</u>)	29 530 504 15 250 0 1211 0 6 4 ◀	2 Binary to 7 Segmen 2-input AND gate 3 J-K Flip-Flop with o 30 LEDDISPLAY - Sev	t Decoder/ klear ven Segmen	
170 7 7 28 7	El El	ເຈ		

å+ ₽B

 $\mathbb{R}^{\mathbb{R}}_{\mathbb{Q}}$

*

‰. 阍

8

÷ ₫ 01|0 **40-**

×

23

13 🖶 ₽__ 😂 ミレーションモデルが追加さ

次に部品パラメータを設定します。 ファンクションツール、部品プロパティ、オプ ションツールからシミュレーションパラメータ 変更を選択します。

ラメータ	設定 Spice	eパラメータ読み込み ミックスモードパラメータ読み込み ライブラリに保存	
品	LE	EDDISP/1 ジミュレーション 12100 締約	
\$⊞	LE	EDDISPLAY - Seven Segment LED Display	
ラメー	値	l¥4⊞	
tle	CATHODE	Common Anode / Cathode { CATHODE, ANODE }	

7 セグメント LED ディスプレイを選択します。 アノード/カソードを選択します。 ここでは、カソードを選択します。

デコードドライバ IC は特に設定する必要はあり ません。

✓ 測定ポイント設定 ページノート

iH!

Q

e

f

q

DΡ

BNK

ファンクションツールからロジック初 期設定、オプションツールから HIGH ステータスを選択します。 BNKの入力上でクリックします。 ラベルを任意の位置へ配置します。

シミュレーション

·원 탄

🋵 占 🔤 30

ÆE

, Ĕ 20

E_10

лш, V?

<u>t</u>

*?

Þ ф Ֆ

× ‰

?≟

影쁜

- 0 **- X** LEDDISP/1 LEDDISP/1 LED DISPLAY g DP BNK 🛛 🗠 オシログラフ - トランジェント解析 - 0 % Variable Voltage • X /div 1 # • ×1 • Y/div 100 m • ×1 時間ステップ LC 初期化 Solve 2 | <mark>) -</mark> / II - | 🔛 🕄 🗉 📍 選択カーブ = 1 軸を別けて波形ビューワを表示

メニューシミュレーションからトランジェン ト解析(オシログラフ)を選択します。

画面にある再生ボタン ♪ をクリックしま す。

7 セグメントの0から7 までカウント表示が 確認できます。