ePRONICS

• OPUSER V

デジタルシミュレーション

基本的な論理素子の動作確認

ミックスモードシミュレータの使用

ここではデジタル回路(論理回路)の基本を OPUSER ミックスモードシミュレータを使用して確認し ていきます。基本動作の確認後にはアナログ部品を追加し、デジタル・アナログ混在回路にて出力波 形の確認を行います。

表示	(V) ヘレプ(H)		_		
	拡大レンズ				
	ナビゲータ				
	ツールバー	+		P2 🔓 🔒	
	単位(U)	+			SCHEMAT
	スケマティック(S)	+	\checkmark	ノード(N)	
	スクロールバー	Ctrl+R	✓	ラッツネスト(R)	
5	ツールチップテキスト(T)		\checkmark	ページノート(P)	
5	U-∃-(R)		\checkmark	デザインノート(D)	
				ビットマップ(M)	
<u> </u>			\checkmark	エントリ(E)	
			\checkmark	ページアウトライン(0)	1
				モノクロ(M)	
			<	ブラウザ	

SCHEMATIC

2 AND

ブラウザ 検索

COMPILES

シンボル パッケージ ホットキー 配置

▶ 7400
 ▶ 7401
 ▶ 7402
 ▶ 7404
 ▶ 7405
 ▶ 7406
 ▶ 7406
 ▶ 7407
 ▶ 7408

D 7409 D 7410 D 7412 D 74132

🛨 --- 🔶 Decode

Diodes
Discrete
Encoder
Filters
FlipFlops

Ŧ

•

初めにスケマティックエディタにてブラウザを 有効にします。

メニュー表示からスケマティック、ブラウザに チェックを入れます。

ブラウザのツリー表示から「Gates」を選択し、 7408 を選択、ダブルクリックします。カーソル ヘシンボル「2AND」がセットされます。画面上 でクリックして配置します。

注意:シンボル 2ANDO はオープンコレクタで すので間違わないようにして下さい。

デジタル入力 デジタル出力

インプット A/Ds

アウトプット D/As

プリミティブ(P)

プリプロセス終了

部品数

	設定	(R) シミュレーション(S) マッ:
	\checkmark	アンドゥ/リドゥ使用
		ズーム倍率設定
		ルーラーの設定
		ツールバーのカスタマイズ
	<	MixedModeシミュレータ
🖥 Mixed-Modeシミュ	1V-	ション設定
アナログネット(人)	0	デジタルネット(<u>D</u>) 0(3)
	-	-

2 504 2-input AND gate

「開じる」 |

1

0

0

1

1

メニュー設定から MixedMode シミュレータを 選択します。

プリプロセス画面が表示されます。 シミュレーションモデルは下記1つです。 「504 2-input AND Gate.」

入力 出力 シミハ (AND) (AN

シミュレーションを行う前に、 AND 回路の入出力結果、真理値表を確認します。

次に入力信号をセットし、出力結果を確認します。

メニューツールから測定ポイント設定 を選択します。

ファンクションツール、ロジック初期設 定、オプションツールから HIGH ステー タスを選択し、入力 A にセットします。 (A=1)

次にオプションツールから LOW ステー タスを選択し、入力 B にセットします。 (B=0)

次に出力波形を監視するノードを設定 します。

ファンクションツールから波形マーカ 一設定、オプションツールから論理波形 マーカーを選択し、A,B,Fノードの上を クリック、近くに配置します。

© ePRONICS Co.LTD

1	1	1	
	 (ツール(T)) 部品 ワイヤ/ ✓ 測定ボ ページ 	設定(R) シミュレー: ソ(ス(W) イント設定 ノート	ション(S) マッ
			· · · · · F· · · ·
iH! A ^{*iS} iL! * B*iS	1(IN1)* 2(IN2)*		

20

21

OPUSER V

シミュレーション

	シミニ	ュレーション(S)	マップ(M)	表示(V)	くて
		プリプロセス(P)			
	1	解析(A)			
		トランジェント解	斜(オシログ	ラフ)(R)	
		トランジェット解	新開始		
🐺 シミュレーションパラメータの	設定	-			x
解析タイプ	パラメータ設定				
	パイアス点計	算			
▲ <mark>111</mark>	過 渡解析	-			
	パラメトリック側	F¥ 1			
□ ┼… 浴 超速解析	フーリエ解析				
	DCスイープ解	杤			
AGスイーブ解析	ACスイープ解	杤			
	モンテカルロ側	F¥ 1			
₩50 	感度解析				
0.12 AS AS AS AS AS					
		開始	\$克行	++>>	セル

メニューシミュレーションから解析 を選択します。

過渡解析にチェックを入れ、開始を クリックします。

🔜 OPUSER - 波刑	形ビューワ -	[MMS_TD≫	ミュレーショ	ン 2016/0	4/20 📕	
💹 ファイル(<u>E</u>)	オプション(O)表OPU	SER - 波形と	ニーワ - [MMS_TDショ	ミュレー
🛛 🖻 🎽	🔒 🗿 🔮	3 🕤 🚫	👐 🏘 🐼	😭 🔣 🗄	🛯 🗘 松	+ →
						_
iS1(2AND71:IN1) iS2(2AND71:IN2)		•				
53(2AND/1:0UT)						
Ċ)s 20)μs 4()μs Բ	60µs	80µs	10
			Time			
•						
						1.

波形ビューワが表示され、3の波形が表示されます。
赤色はデジタル 1 、緑色はデジタル 0 を表しています。
今回、使用している 7408 は DIP14 パッケージ内に AND 回路が 4 つあります。
2AND/1 は 1 つめの回路を表しています。
iS1[2AND/1:IN1]: 2AND シンボル エントリポイント 1 (IN1)の波形
iS2[2AND/1:IN2]: 2AND シンボル エントリポイント 1 (IN2)の波形
iS3[2AND/1:OUT]: 2AND シンボル エントリポイント 1 (OUT)の出力波形
入力信号を真理値表通りに変更して出力信号の確認を行ってください。
同様に他の基本的な論理回路の動作確認ができます。

© ePRONICS Co.LTD

OPUSER V

MixedMode Simulator

デジタル回路アナログ回路が混在している回路においても特別な設定なしでミックスモードシミュレ ータを使用してシミュレーションが行えます。

下記の混在回路を使用してシミュレーションを行います。下記回路図を作成します。

下表にリストされている部品を使って回路図を作成しましょう。

使用パーツリスト				
デバイス	名称	デフォルトホットキー※		
電源	SPL1			
抵抗	RC05	R		
スイッチ	VOLSWITCH			
2AND	7408			

※初期設定されているキーとなり、キー入力によって部品が呼びだされます。

ホットキーがと登録されていない部品を名称で配置してください。

😪 Mixed-Mode रुइ	ミュレーショ	コン設定	×
アナログネット(ム)	4	デジタル ネット(D)	1
UN1	-	UN3	-
デジタル入力 デジタル出力 インブット A/Ds アウトブット D/As 部品数	2 504 -36 1 -1 2 -13 0 7	2-input AND gate Voltage Source Resistor Switch	
プリミティブ(P)	4		
	F	103	
プリプロセス終了			

2AND 回路 メニュー設定から MixedMode シミュレータを 選択します。 既に起動している場合は、シミュ レーションからプリプロセスを選択します。 シミュレーション(S) マップ(M) プリプロセス(P)

プリプロセス画面が表示されます。

<u>ネットの変更、部品の追加変更を行った場合は、</u> 再度プリプロセスを実行してください。

ネットタイプは2つ存在し、部品がネットへ接 続されアナロモデルを持っている部品はアナロ グネット、デジタルモデルを持っている部品は デジタルネットとされ、両方のモデルを持って いる場合はアナログネットとされます。

次に回路図のパラメータを入力します。

ファンクションツールから部品プロパティ、オプションツ ールから部品値追加変更を選択し、部品をクリックし、値 を入力します。

■ 抵抗をクリック 10K と入力します。

RES/1	RES/1 - 都品値の変更	承認 キャンセル
Ē	10K	
+5\	SPL1/1 - 値の設定	米 認
		<u>キャンセル</u>

SPL1(電源)をクリック 5V と入力します。

5 V

スイッチのパラメータを設定します。 オプションツールから、シミュレーションパラメータ変更 を選択し、スイッチをクリックします。

	剖	品パラメー	-夕設定	2		X
	C	パラメータ認	≿r s	pice	◎パラメータ読み込み│ミックスモードパラメータ読み込み│ ライブラリに保存│	
		部品		VO	LSWITCH/2 ジミュレーション -13 機能	_
		≣¥\$⊞		Sw	itch	
to the second se		パラメー タ	値		詳細	
(Σ^{\vee})		NS		1	No. of Switching Times { 1,2,3, CYOLIC }	
\mathbf{Y}		So	OFF		Initial State { OFF, ON }	
		Т1	6	0 s	Switch.Time1 [s]	
s						
					ヘルプ 承認 キャン1	zIb

初期状態 So: OFF にします。 この設定で、スイッチ ON 時入力 信号 0、スイッチ OFF 時入力信号 1 となります。

シミュレーション中にステータス の変更を行わないようにする場 合、T1の値を例えば60sとします。

次に波形マーカーを配置します。 メニューツールから測定ポイント設定を 選択します。

ファンクションツールから波形マーカー 設定、オプションツールから電圧波形マ ーカーを選択し、入力1と入力2に配置 します。

出力に論理波形マーカーを配置します。

۳<u>٦</u>

入力信号ネットはアナログのため論理波 形マーカーを配置できません。

<u>2AND 回路</u> メニューシミュレーションから 解析を選択します。

単粧ダイノ	パラメータ設定	
解析	バイアス点計算	
10 一般設定	過 渡解析	
	パラメトリック解れ	
⊣ 💥 過速解析	フーリエ解析	
DCスイーブ解析	DCスイープ解析	
	ACスイープ解析	
	モンテカルロ解れ	
V550 C/F/D/VH 841/1	感度解析	

シミュレーション(S) マップ(M) 表示(V) ヘルフ

トランジェント解析(オシログラフ)(R)

プリプロセス(P)

トランジェット解析開始

解析(A)

過渡解析にチェックを入れ開始 をクリックします。

シミュレーションの結果が表示 されます。

- V1,V2:電圧波形は論理状態では なく、電圧値を表して います。
- S1:出力状態を示します。